Covera-hs

Covera-hs

Covera-hs Recall

Get an alert when a recall is issued.

Questions & Answers

Side Effects & Adverse Reactions

Heart failure

Verapamil has a negative inotropic effect, which in most patients is compensated by its afterload reduction (decreased systemic vascular resistance) properties without a net impairment of ventricular performance. In previous clinical experience with 4,954 patients primarily with immediate-release verapamil, 1.8% developed congestive heart failure or pulmonary edema. Verapamil should be avoided in patients with severe left ventricular dysfunction (e.g., ejection fraction less than 30%) or moderate to severe symptoms of cardiac failure and in patients with any degree of ventricular dysfunction if they are receiving a beta-adrenergic blocker (see PRECAUTIONS, Drug interactions). Patients with milder ventricular dysfunction should, if possible, be controlled with optimum doses of digitalis and/or diuretics before verapamil treatment is started. (Note interactions with digoxin under PRECAUTIONS.)

Hypotension

Occasionally, the pharmacologic action of verapamil may produce a decrease in blood pressure below normal levels, which may result in dizziness or symptomatic hypotension. In previous verapamil clinical trials, the incidence observed in 4,954 patients was 2.5%. In clinical studies of COVERA-HS, 0.4% of hypertensive patients and 1.0% of angina patients developed significant hypotension. In hypertensive patients, decreases in blood pressure below normal are unusual. Tilt-table testing (60 degrees) was not able to induce orthostatic hypotension.

Elevated liver enzymes

Elevations of transaminases with and without concomitant elevations in alkaline phosphatase and bilirubin have been reported. Such elevations have sometimes been transient and may disappear even in the face of continued verapamil treatment. Several cases of hepatocellular injury related to verapamil have been proven by rechallenge; half of these had clinical symptoms (malaise, fever, and/or right upper quadrant pain) in addition to elevation of SGOT, SGPT, and alkaline phosphatase. Periodic monitoring of liver function in patients receiving verapamil is therefore prudent.

Accessory bypass tract (Wolff-Parkinson-White or Lown-Ganong-Levine)

Some patients with paroxysmal and/or chronic atrial fibrillation or atrial flutter and a coexisting accessory AV pathway have developed increased antegrade conduction across the accessory pathway bypassing the AV node, producing a very rapid ventricular response or ventricular fibrillation after receiving intravenous verapamil (or digitalis). Although a risk of this occurring with oral verapamil has not been established, such patients receiving oral verapamil may be at risk and its use in these patients is contraindicated (see CONTRAINDICATIONS). Treatment is usually DC-cardioversion. Cardioversion has been used safely and effectively after oral verapamil.

Atrioventricular block

The effect of verapamil on AV conduction and the SA node may cause asymptomatic first-degree AV block and transient bradycardia, sometimes accompanied by nodal escape rhythms. PR-interval prolongation is correlated with verapamil plasma concentrations, especially during the early titration phase of therapy. Higher degrees of AV block, however, were infrequently (0.8%) observed in previous verapamil clinical trials. Marked first-degree block or progressive development to second- or third-degree AV block requires a reduction in dosage or, in rare instances, discontinuation of verapamil HCl and institution of appropriate therapy, depending upon the clinical situation.

Patients with hypertrophic cardiomyopathy (IHSS)

In 120 patients with hypertrophic cardiomyopathy (most of them refractory or intolerant to propranolol) who received therapy with verapamil at doses up to 720 mg/day, a variety of serious adverse effects were seen. Three patients died in pulmonary edema; all had severe left ventricular outflow obstruction and a past history of left ventricular dysfunction. Eight other patients had pulmonary edema and/or severe hypotension; abnormally high (greater than 20 mm Hg) pulmonary wedge pressure and a marked left ventricular outflow obstruction were present in most of these patients. Concomitant administration of quinidine (see PRECAUTIONS, Drug interactions) preceded the severe hypotension in 3 of the 8 patients (2 of whom developed pulmonary edema). Sinus bradycardia occurred in 11% of the patients, second-degree AV block in 4%, and sinus arrest in 2%. It must be appreciated that this group of patients had a serious disease with a high mortality rate. Most adverse effects responded well to dose reduction, and only rarely did verapamil use have to be discontinued.

Legal Issues

There is currently no legal information available for this drug.

FDA Safety Alerts

There are currently no FDA safety alerts available for this drug.

Manufacturer Warnings

There is currently no manufacturer warning information available for this drug.

FDA Labeling Changes

There are currently no FDA labeling changes available for this drug.

Uses

COVERA-HS is indicated for the management of hypertension and angina.

History

There is currently no drug history available for this drug.

Other Information

COVERA-HS (verapamil hydrochloride) is a calcium ion influx inhibitor (slow-channel blocker or calcium ion antagonist). COVERA-HS is available for oral administration as pale yellow, round, film-coated tablets containing 240 mg of verapamil hydrochloride and as lavender, round, film-coated tablets containing 180 mg of verapamil hydrochloride. Verapamil is administered as a racemic mixture of the R and S enantiomers. The structural formulae of the verapamil HCl enantiomers are:

Chemical Structure

Verapamil HCl is an almost white, crystalline powder, practically free of odor, with a bitter taste. It is soluble in water, chloroform, and methanol. Verapamil HCl is not chemically related to other cardioactive drugs.

Inactive ingredients are black ferric oxide, BHT, cellulose acetate, hydroxyethyl cellulose, hydroxypropyl cellulose, hypromellose, magnesium stearate, polyethylene glycol, polyethylene oxide, polysorbate 80, povidone, sodium chloride, titanium dioxide, and coloring agents: 240 mg—FD&C Blue No. 2 Lake and D&C Yellow No. 10 Lake; 180 mg—FD&C Blue No. 2 Lake and D&C Red No. 30 Lake.

System components and performance

The COVERA-HS formulation has been designed to initiate the release of verapamil 4–5 hours after ingestion. This delay is introduced by a layer between the active drug core and outer semipermeable membrane. As water from the gastrointestinal tract enters the tablet, this delay coating is solubilized and released. As tablet hydration continues, the osmotic layer expands and pushes against the drug layer, releasing drug through precision laser-drilled orifices in the outer membrane at a constant rate. This controlled rate of drug delivery in the gastrointestinal lumen is independent of posture, pH, gastrointestinal motility, and fed or fasting conditions.

The biologically inert components of the delivery system remain intact during GI transit and are eliminated in the feces as an insoluble shell.

Covera-hs Manufacturers


  • G.d. Searle Llc Division Of Pfizer Inc
    Covera-hs (Verapamil Hydrochloride) Tablet, Extended Release [G.d. Searle Llc Division Of Pfizer Inc]

Login To Your Free Account