Advicor

Advicor

Advicor Recall

Get an alert when a recall is issued.

Questions & Answers

Side Effects & Adverse Reactions

ADVICOR should not be substituted for equivalent doses of immediate-release (crystalline) niacin. For patients switching from immediate-release niacin to NIASPAN, therapy with NIASPAN should be initiated with low doses (i.e., 500 mg once daily at bedtime) and the NIASPAN dose should then be titrated to the desired therapeutic response (see DOSAGE AND ADMINISTRATION).

Liver Dysfunction

Cases of severe hepatic toxicity, including fulminant hepatic necrosis, have occurred in patients who have substituted sustained-release (modified-release, timed-release) niacin products for immediate-release (crystalline) niacin at equivalent doses.

ADVICOR should be used with caution in patients who consume substantial quantities of alcohol and/or have a past history of liver disease. Active liver disease or unexplained transaminase elevations are contraindications to the use of ADVICOR.

Niacin preparations and lovastatin preparations have been associated with abnormal liver tests. In studies using NIASPAN alone, 0.8% of patients were discontinued for transaminase elevations. In studies using lovastatin alone, 0.2% of patients were discontinued for transaminase elevations.2 In three safety and efficacy studies involving titration to final daily ADVICOR doses ranging from 500 mg/10 mg to 2500 mg/40 mg, ten of 1028 patients (1.0%) experienced reversible elevations in AST/ALT to more than 3 times the upper limit of normal (ULN). Three of ten elevations occurred at doses outside the recommended dosing limit of 2000 mg/40 mg; no patient receiving 1000 mg/20 mg had 3-fold elevations in AST/ALT.

In clinical studies with ADVICOR, elevations in transaminases did not appear to be related to treatment duration; elevations in AST and ALT levels did appear to be dose related. Transaminase elevations were reversible upon discontinuation of ADVICOR.

It is recommended that liver enzyme tests be obtained prior to initiating therapy with ADVICOR and repeated as clinically indicated.

There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including lovastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with ADVICOR, promptly interrupt therapy. If an alternate etiology is not found do not restart ADVICOR.

Myopathy/Rhabdomyolysis

Lovastatin and other inhibitors of HMG-CoA reductase occasionally cause myopathy, which is manifested as muscle pain or weakness associated with grossly elevated creatine kinase (> 10 times ULN). Rhabdomyolysis, with or without acute renal failure secondary to myoglobinuria, has been reported rarely and can occur at any time. In a large, long-term, clinical safety and efficacy study (the EXCEL study)3,4 with lovastatin, myopathy occurred in up to 0.2% of patients treated with lovastatin 20 to 80 mg for up to 2 years. When drug treatment was interrupted or discontinued in these patients, muscle symptoms and creatine kinase (CK) increases promptly resolved. The risk of myopathy is increased by concomitant therapy with certain drugs, some of which were excluded by the EXCEL study design.

The risk of myopathy/rhabdomyolysis is increased by concomitant use of lovastatin with the following:

Strong inhibitors of CYP3A4: The risk of myopathy appears to be increased by high levels of HMG-CoA reductase inhibitory activity in plasma. Lovastatin is metabolized by the cytochrome P450 isoform 3A4. Certain drugs which share this metabolic pathway can raise the plasma levels of lovastatin and may increase the risk of myopathy. These include itraconazole, ketoconazole, and posaconazole, the macrolide antibiotics erythromycin and clarithromycin, and the ketolide antibiotic telithromycin, HIV protease inhibitors, boceprevir, telaprevir, the antidepressant nefazodone, or large quantities of grapefruit juice (>1 quart daily). Combination of these drugs with lovastatin is contraindicated. If treatment with itraconazole, ketoconazole, erythromycin, clarithromycin or telithromycin is unavoidable, therapy with lovastatin should be suspended during the course of treatment.

Although not studied clinically, voriconazole has been shown to inhibit lovastatin metabolism in vitro (human liver microsomes). Therefore, voriconazole is likely to increase the plasma concentration of lovastatin. It is recommended that dose adjustment of lovastatin be considered during coadministration. Increased lovastatin concentration in plasma has been associated with an increased risk of myopathy/rhabdomyolysis.

Gemfibrozil: The combined use of lovastatin with gemfibrozil should be avoided.

Other fibrates: Caution should be used when prescribing other fibrates with lovastatin, as these agents can cause myopathy when given alone. The benefit of further alterations in lipid levels by the combined use of lovastatin with other fibrates should be carefully weighed against the potential risks of this combination.

Cyclosporine: The use of lovastatin with cyclosporine should be avoided.

Danazol, diltiazem or verapamil with higher doses of lovastatin: In patients taking concomitant danazol, diltiazem or verapamil, the dose of lovastatin should not exceed 20 mg (see DOSAGE AND ADMINISTRATION), as the risk of myopathy increases at higher doses. The benefits of the use of lovastatin in patients receiving danazol, diltiazem, or verapamil should be carefully weighed against the risks of these combinations.

Amiodarone: In patients taking concomitant amiodarone, the dose of lovastatin should not exceed 40 mg (see DOSAGE AND ADMINISTRATION), as the risk of myopathy increases at higher doses.

Colchicine: Cases of myopathy, including rhabdomyolysis, have been reported with lovastatin coadministered with colchicine, and caution should be exercised when prescribing lovastatin with colchicine.

Ranolazine: The risk of myopathy, including rhabdomyolysis, may be increased by concomitant administration of ranolazine. Dose adjustment of lovastatin may be considered during co-administration with ranolazine.

Prescribing recommendations for interacting agents are summarized in Table 9.

Table 9
Drug Interactions Associated with Increased
Risk of Myopathy/Rhabdomyolysis
Interacting AgentsPrescribing Recommendations
Strong CYP3A4 inhibitors, e.g.:
Ketoconazole
Itraconazole
Posaconazole
Erythromycin
Clarithromycin
Telithromycin
HIV protease inhibitors
Boceprevir
Telaprevir
Nefazodone
Contraindicated with lovastatin
Gemfibrozil
Cyclosporine
Avoid with lovastatin
Danazol
Diltiazem
Verapamil
Do not exceed 20 mg lovastatin daily
AmiodaroneDo not exceed 40 mg lovastatin daily
Grapefruit juiceAvoid large quantities of grapefruit juice (>1 quart daily)
ADVICOR

Myopathy and/or rhabdomyolysis have been reported when lovastatin is used in combination with lipid-altering doses (≥1g/day) of niacin. Physicians contemplating the use of ADVICOR, a combination of lovastatin and niacin, should weigh the potential benefits and risks, and should carefully monitor patients for any signs and symptoms of muscle pain, tenderness, or weakness, particularly during the initial month of treatment or during any period of upward dosage titration of either drug. Periodic CK determinations may be considered in such situations, but there is no assurance that such monitoring will prevent myopathy.

In clinical studies, no cases of rhabdomyolysis and one suspected case of myopathy have been reported in 1079 patients who were treated with ADVICOR at doses up to 2000 mg/40 mg for periods up to 2 years.

Patients starting therapy with ADVICOR should be advised of the risk of myopathy, and told to report promptly unexplained muscle pain, tenderness, or weakness. A CK level above 10 times ULN in a patient with unexplained muscle symptoms indicates myopathy. ADVICOR therapy should be discontinued if myopathy is diagnosed or suspected.

In patients with complicated medical histories predisposing to rhabdomyolysis, such as preexisting renal insufficiency, dose escalation requires caution. ADVICOR therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected. ADVICOR therapy should also be temporarily withheld in any patient experiencing an acute or serious condition predisposing to the development of renal failure secondary to rhabdomyolysis, e.g., sepsis; hypotension; major surgery; trauma; severe metabolic, endocrine, or electrolyte disorders; or uncontrolled epilepsy.

Legal Issues

There is currently no legal information available for this drug.

FDA Safety Alerts

There are currently no FDA safety alerts available for this drug.

Manufacturer Warnings

There is currently no manufacturer warning information available for this drug.

FDA Labeling Changes

There are currently no FDA labeling changes available for this drug.

Uses

Therapy with lipid-altering agents should be only one component of multiple risk-factor intervention in individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Drug therapy is indicated as an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate (see also Table 8 and the NCEP treatment guidelines1).

ADVICOR

ADVICOR (niacin extended-release and lovastatin) is indicated for use when treatment with both NIASPAN and lovastatin is appropriate. As described in the labeling for Niaspan and lovastatin below, the components of ADVICOR are both indicated for the treatment of hypercholesterolemia. Patients receiving treatment with ADVICOR should be on a standard cholesterol-lowering diet and should continue on this diet during treatment.

NIASPAN (niacin extended-release)
Hypercholesterolemia

NIASPAN is indicated as an adjunct to diet for reduction of elevated TC, LDL-C, Apo B and TG levels, and to increase HDL-C in patients with primary hypercholesterolemia (heterozygous familial and nonfamilial) and mixed dyslipidemia (Table 7), when the response to an appropriate diet has been inadequate.

Secondary Prevention of Cardiovascular Events

In patients with a history of myocardial infarction and hypercholesterolemia, niacin is indicated to reduce the risk of recurrent nonfatal myocardial infarction.

Hypertriglyceridemia

Niacin is also indicated as adjunctive therapy for treatment of adult patients with very high serum triglyceride levels (Table 7) who present a risk of pancreatitis and who do not respond adequately to a determined dietary effort to control them. Such patients typically have serum TG levels over 2000 mg/dL and have elevations of VLDL-C as well as fasting chylomicrons (Table 7). Patients who consistently have total serum or plasma TG below 1000 mg/dL are unlikely to develop pancreatitis. Therapy with niacin may be considered for those patients with TG elevations between 1000 and 2000 mg/dL who have a history of pancreatitis or of recurrent abdominal pain typical of pancreatitis. Some patients with TG under 1000 mg/dL may, through dietary or alcohol indiscretion, convert to a pattern with massive TG elevations accompanying fasting chylomicronemia, but the influence of niacin therapy on risk of pancreatitis in such situations has not been adequately studied. Drug therapy is not indicated for patients with hyperlipoproteinemia, who have elevations of chylomicrons and plasma TG, but who have normal levels of VLDL-C.

Lovastatin
Hypercholesterolemia

Lovastatin is indicated as an adjunct to diet for the reduction of elevated TC and LDL-C levels in patients with primary hypercholesterolemia (Table 7), when the response to diet restricted in saturated fat and cholesterol and to other nonpharmacological measures alone has been inadequate.

Primary Prevention of Cardiovascular Events

In individuals without symptomatic cardiovascular disease, average to moderately elevated TC and LDL-C, and below average HDL-C, lovastatin is indicated to reduce the risk of:

  • Myocardial infarction
  • Unstable angina
  • Coronary revascularization procedures
Secondary Prevention of Cardiovascular Events

Lovastatin is also indicated to slow the progression of coronary atherosclerosis in patients with coronary heart disease as part of a treatment strategy to lower TC and LDL-C to target levels.

The National Cholesterol Education Program (NCEP) Treatment Guidelines are summarized below:

TC = total cholesterol; TG = triglycerides; LDL = low-density lipoprotein; VLDL = very low-density lipoprotein; IDL = intermediate-density lipoprotein ↑→ = increased or no change
Table 7. Classification of Hyperlipoproteinemias
TypeLipoproteins ElevatedLipid Elevations
I (rare)ChylomicronsMajorMinor
IIaLDLTG↑→TC
IIbLDL,VLDLTC    -
III (rare)IDLTC     TG
IVVLDLTC/TG  -
V (rare)Chylomicrons, VLDLTG↑→TC
General Recommendations

Prior to initiating therapy with a lipid-lowering agent, secondary causes for hypercholesterolemia (e.g., poorly controlled diabetes mellitus, hypothyroidism, nephrotic syndrome, dysproteinemias, obstructive liver disease, other drug therapy, alcoholism) should be excluded, and a lipid profile performed to measure TC, HDL-C, and TG. For patients with TG < 400 mg/dL, LDL-C can be estimated using the following equation:

LDL-C = TC - [(0.20 x TG) + HDL-C]

For TG levels > 400 mg/dL, this equation is less accurate and LDL-C concentrations should be determined by ultracentrifugation. Lipid determinations should be performed at intervals of no less than 4 weeks and dosage adjusted according to the patient's response to therapy. The NCEP Treatment Guidelines are summarized in Table 8.

Table 8. NCEP Treatment Guidelines: LDL-C Goals and Cutpoints for Therapeutic Lifestyle Changes and Drug Therapy in Different Risk Categories
Risk CategoryLDL Goal
(mg/dL)
LDL Level at Which to Initiate Therapeutic Lifestyle Changes
(mg/dL)
LDL Level at Which to
Consider Drug
Therapy (mg/dL)
CHD or CHD
risk equivalents
(10-year risk >20%)
<100≥ 100≥ 130
(100-129:drug optional) ††
2+ Risk factors
(10-year risk ≤20%)
<130≥ 13010-year risk 10%-20%: ≥ 130
10-year risk <10%: ≥ 160
0-1 Risk factor †††<160≥ 160≥ 190
(160-189:LDL-lowering
drug optional)
CHD, coronary heart disease
†† Some authorities recommend use of LDL-lowering drugs in this category if an LDL-C level of <100 mg/dL cannot be achieved by therapeutic lifestyle changes. Others prefer use of drugs that primarily modify triglycerides and HDL-C, e.g., nicotinic acid or fibrate. Clinical judgement also may call for deferring drug therapy in this subcategory.
††† Almost all people with 0-1 risk factor have 10-year risk <10%; thus, 10-year risk assessment in people with 0-1 risk factor is not necessary.

After the LDL-C goal has been achieved, if the TG is still ≥200 mg/dL, non-HDL-C (TC minus HDL-C) becomes a secondary target of therapy. Non-HDL-C goals are set 30 mg/dL higher than LDL-C goals for each risk category.

History

There is currently no drug history available for this drug.

Other Information

ADVICOR® (niacin extended-release and lovastatin) is intended to facilitate the daily administration of its individual components, Niaspan® and lovastatin, when used together for the intended patient population (see INDICATIONS AND USAGE and DOSAGE AND ADMINISTRATION).

ADVICOR contains niacin extended-release and lovastatin in combination. Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, and niacin are both lipid-altering agents.

Niacin is nicotinic acid, or 3-pyridinecarboxylic acid. Niacin is a white, nonhygroscopic crystalline powder that is very soluble in water, boiling ethanol and propylene glycol. It is insoluble in ethyl ether. The empirical formula of niacin is C6H5NO2 and its molecular weight is 123.11. Niacin has the following structural formula:

Chemical formula for Niacin.

Lovastatin is [1S -[1(alpha)(R *), 3(alpha), 7(beta), 8(beta)(2S *, 4S *), 8a(beta)]]-1,2,3, 7,8,8a-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl) ethyl]-1-naphthalenyl 2-methylbutanoate. Lovastatin is a white, nonhygroscopic crystalline powder that is insoluble in water and sparingly soluble in ethanol, methanol, and acetonitrile. The empirical formula of lovastatin is C24H36O5 and its molecular weight is 404.55. Lovastatin has the following structural formula:

Chemical formula for Lovastatin.

ADVICOR tablets contain the labeled amount of niacin and lovastatin and have the following inactive ingredients: hypromellose, povidone, stearic acid, polyethylene glycol, titanium dioxide, polysorbate 80.

The individual tablet strengths (expressed in terms of mg niacin/mg lovastatin) contain the following coloring agents:

ADVICOR 500 mg/20 mg - Iron Oxide Yellow, Iron Oxide Red.
ADVICOR 750 mg/20 mg - FD&C Yellow #6/Sunset Yellow FCF Aluminum Lake.
ADVICOR 1000 mg/20 mg - Iron Oxide Red, Iron Oxide Yellow, Iron Oxide Black.
ADVICOR 1000 mg/40 mg - Iron Oxide Red.

Advicor Manufacturers


  • Physicians Total Care, Inc.
    Advicor (Niacin And Lovastatin) Tablet, Extended Release [Physicians Total Care, Inc.]
  • Abbvie Inc.
    Advicor (Niacin And Lovastatin) Tablet, Extended Release [Abbvie Inc.]

Login To Your Free Account