Gengraf

Gengraf

Gengraf Recall

Get an alert when a recall is issued.

Questions & Answers

Side Effects & Adverse Reactions

(See also Boxed WARNINGS).

All Patients

Cyclosporine, the active ingredient of Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]), can cause nephrotoxicity and hepatotoxicity. The risk increases with increasing doses of cyclosporine. Renal dysfunction including structural kidney damage is a potential consequence of Gengraf® and therefore renal function must be monitored during therapy. Care should be taken in using cyclosporine with nephrotoxic drugs (see PRECAUTIONS).

Patients receiving Gengraf® require frequent monitoring of serum creatinine (see Special Monitoring under DOSAGE AND ADMINISTRATION). Elderly patients should be monitored with particular care, since decreases in renal function also occur with age. If patients are not properly monitored and doses are not properly adjusted, cyclosporine therapy can be associated with the occurrence of structural kidney damage and persistent renal dysfunction.

An increase in serum creatinine and BUN may occur during Gengraf® therapy and reflect a reduction in the glomerular filtration rate. Impaired renal function at any time requires close monitoring, and frequent dosage adjustment may be indicated. The frequency and severity of serum creatinine elevations increase with dose and duration of cyclosporine therapy. These elevations are likely to become more pronounced without dose reduction or discontinuation.

Because Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]) is not bioequivalent to Sandimmune® Soft Gelatin Capsules (cyclosporine capsules, USP), conversion from Gengraf® to Sandimmune® using a 1:1 ratio (mg/kg/day) may result in lower cyclosporine blood concentrations. Conversion from Gengraf® to Sandimmune® should be made with increased monitoring to avoid the potential of underdosing.

Kidney, Liver, and Heart Transplant

Nephrotoxicity

Cyclosporine, the active ingredient of Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]), can cause nephrotoxicity and hepatotoxicity when used in high doses. It is not unusual for serum creatinine and BUN levels to be elevated during cyclosporine therapy. These elevations in renal transplant patients do not necessarily indicate rejection, and each patient must be fully evaluated before dosage adjustment is initiated.

Based on the historical Sandimmune® experience with oral solution, nephrotoxicity associated with cyclosporine had been noted in 25% of cases of renal transplantation, 38% of cases of cardiac transplantation, and 37% of cases of liver transplantation. Mild nephrotoxicity was generally noted 2 to 3 months after renal transplant and consisted of an arrest in the fall of the pre-operative elevations of BUN and creatinine at a range of 35 to 45 mg/dL and 2.0 to 2.5 mg/dL respectively. These elevations were often responsive to cyclosporine dosage reduction.

More overt nephrotoxicity was seen early after transplantation and was characterized by a rapidly rising BUN and creatinine. Since these events are similar to renal rejection episodes, care must be taken to differentiate between them. This form of nephrotoxicity is usually responsive to cyclosporine dosage reduction.

Although specific diagnostic criteria which reliably differentiate renal graft rejection from drug toxicity have not been found, a number of parameters have been significantly associated with one or the other. It should be noted however, that up to 20% of patients may have simultaneous nephrotoxicity and rejection.

Nephrotoxicity vs. Rejection

Parameter

Nephrotoxicity

Rejection

History

Donor > 50 years old or hypotensive
Prolonged kidney preservation
Prolonged anastomosis time
Concomitant nephrotoxic drugs

Anti-donor immune response
Retransplant patient

Clinical

Often > 6 weeks postopb
Prolonged initial nonfunction
(acute tubular necrosis)

Often < 4 weeks postopb
Fever > 37.5°C
Weight gain > 0.5 kg
Graft swelling and tenderness
Decrease in daily urine volume
> 500 mL (or 50%)

Laboratory

CyA serum trough level > 200 ng/mL
Gradual rise in Cr (< 0.15 mg/dL/day)a
Cr plateau < 25% above baseline
BUN/Cr ≥ 20

CyA serum trough level < 150 ng/mL
Rapid rise in Cr (> 0.3 mg/dL/day)a
Cr > 25% above baseline
BUN/Cr < 20

Biopsy

Arteriolopathy (medial hypertrophya, hyalinosis, nodular deposits, intimal thickening, endothelial vacuolization, progressive scarring)
Tubular atrophy, isometric vacuolization, isolated calcifications
Minimal edema
Mild focal infiltratesc
Diffuse interstitial fibrosis, often striped form

Endovasculitisc (proliferationa, intimal arteritisb, necrosis, sclerosis)

Tubulitis with RBCb and WBCb casts, some irregular vacuolization
Interstitial edemac and hemorrhageb
Diffuse moderate to severe mononuclear infiltratesd
Glomerulitis (mononuclear cells)c

Aspiration Cytology

CyA deposits in tubular and endothelial cells
Fine isometric vacuolization of tubular cells

Inflammatory infiltrate with mononuclear phagocytes, macrophages, lymphoblastoid cells, and activated T-cells
These strongly express HLA-DR antigens

Urine Cytology

Tubular cells with vacuolization and granularization

Degenerative tubular cells, plasma cells, and lymphocyturia > 20% of sediment

Manometry
Ultrasonography

Intracapsular pressure < 40 mm Hgb
Unchanged graft cross sectional area

Intracapsular pressure > 40 mm Hgb
Increase in graft cross sectional area
AP diameter ≥ Transverse diameter

Magnetic Resonance Imagery

Normal appearance

Loss of distinct corticomedullary junction, swelling image intensity of parachyma approaching that of psoas, loss of hilar fat

Radionuclide Scan

Normal or generally decreased perfusion
Decrease in tubular function
(131 I-hippuran) > decrease in perfusion
(99m Tc DTPA)

Patchy arterial flow
Decrease in perfusion > decrease in tubular function
Increased uptake of Indium 111 labeled platelets or Tc-99m in colloid

Therapy

Responds to decreased cyclosporine

Responds to increased steroids or antilymphocyte globulin

a p < 0.05, b p < 0.01, c p < 0.001, d p < 0.0001

A form of a cyclosporine-associated nephropathy is characterized by serial deterioration in renal function and morphologic changes in the kidneys. From 5% to 15% of transplant recipients who have received cyclosporine will fail to show a reduction in rising serum creatinine despite a decrease or discontinuation of cyclosporine therapy. Renal biopsies from these patients will demonstrate one or several of the following alterations: tubular vacuolization, tubular microcalcifications, peritubular capillary congestion, arteriolopathy, and a striped form of interstitial fibrosis with tubular atrophy. Though none of these morphologic changes is entirely specific, a diagnosis of cyclosporine-associated structural nephrotoxicity requires evidence of these findings.

When considering the development of cyclosporine-associated nephropathy, it is noteworthy that several authors have reported an association between the appearance of interstitial fibrosis and higher cumulative doses or persistently high circulating trough concentrations of cyclosporine. This is particularly true during the first 6 post-transplant months when the dosage tends to be highest and when, in kidney recipients, the organ appears to be most vulnerable to the toxic effects of cyclosporine. Among other contributing factors to the development of interstitial fibrosis in these patients are prolonged perfusion time, warm ischemia time, as well as episodes of acute toxicity, and acute and chronic rejection. The reversibility of interstitial fibrosis and its correlation to renal function have not yet been determined. Reversibility of arteriolopathy has been reported after stopping cyclosporine or lowering the dosage.

Impaired renal function at any time requires close monitoring, and frequent dosage adjustment may be indicated.

In the event of severe and unremitting rejection, when rescue therapy with pulse steroids and monoclonal antibodies fail to reverse the rejection episode, it may be preferable to switch to alternative immunosuppressive therapy rather than increase the Gengraf® dose to excessive blood concentrations.

Due to the potential for additive or synergistic impairment of renal function, caution should be exercised when coadministering Gengraf® with other drugs that may impair renal function (see PRECAUTIONS - Drug Interactions).

Thrombotic Microangiopathy

Occasionally patients have developed a syndrome of thrombocytopenia and microangiopathic hemolytic anemia which may result in graft failure. The vasculopathy can occur in the absence of rejection and is accompanied by avid platelet consumption within the graft as demonstrated by Indium 111 labeled platelet studies. Neither the pathogenesis nor the management of this syndrome is clear. Though resolution has occurred after reduction or discontinuation of cyclosporine and 1) administration of streptokinase and heparin or 2) plasmapheresis, this appears to depend upon early detection with Indium 111 labeled platelet scans (see ADVERSE REACTlONS).

Hyperkalemia

Significant hyperkalemia (sometimes associated with hyperchloremic metabolic acidosis) and hyperuricemia have been seen occasionally in individual patients.

Hepatotoxicity

Cases of hepatotoxicity and liver injury including cholestasis, jaundice, hepatitis and liver failurehave been reported in patients treated with cyclosporine. Most reports included patients with significant co-morbidities, underlying conditions and other confounding factors includinginfectious complications and comedications with hepatotoxic potential. In some cases, mainly intransplant patients, fatal outcomes have been reported (see ADVERSE REACTIONS, Postmarketing Experience, Kidney, Liver and Heart Transplantation).

Hepatotoxicity usually manifested by elevations of hepatic enzymes and bilirubin, was reported in patients treated with cyclosporine in clinical trials: 4% in renal transplantation, 7% in cardiac transplantation, and 4% in liver transplantation. This was usually noted during the first month of therapy when high doses of cyclosporine were used. The chemistry elevations usually decreased with a reduction in dosage.

Malignancies

As in patients receiving other immunosuppressants, those patients receiving cyclosporine are at increased risk for development of lymphomas and other malignancies, particularly those of the skin. Patients taking cyclosporine should be warned to avoid excess ultraviolet light exposure. The increased risk appears related to the intensity and duration of immunosuppression rather than to the use of specific agents. Because of the danger of oversuppression of the immune system resulting in increased risk of infection or malignancy, a treatment regimen containing multiple immunosuppressants should be used with caution. Some malignancies may be fatal. Transplant patients receiving cyclosporine are at increased risk for serious infection with fatal outcome.

Serious Infections

Patients receiving immunosuppressants, including Gengraf®, are at increased risk of developing bacterial, viral, fungal, and protozoal infections, including opportunistic infections. These infections may lead to serious, including fatal, outcomes (see Boxed WARNING and ADVERSE REACTIONS).

Polyoma Virus Infections

Patients receiving immunosuppressants including Gengraf® are at increased risk for opportunistic infections, including polyoma virus infections. Polyoma virus infections in transplant patients may have serious, and sometimes, fatal outcomes. These include cases of JC virus-associated progressive multifocal leukoencephalopathy (PML) and polyoma virus-associated nephropathy (PVAN) especially due to BK virus infection which have been observed in patients receiving cyclosporine. PVAN is associated with serious outcomes, including deteriorating renal function and renal graft loss, (see ADVERSE REACTIONS/Postmarketing Experience, Kidney, Liver and Heart Transplantation). Patient monitoring may help detect patients at risk for PVAN.

Cases of PML have been reported in patients treated with Gengraf®. PML, which is sometimes fatal, commonly presents with hemiparesis, apathy, confusion, cognitive deficiencies and ataxia. Risk factors for PML include treatment with immunosuppressant therapies and impairment of immune function. In immunosuppressed patients, physicians should consider PML in the differential diagnosis in patients reporting neurological symptoms and consultation with a neurologist should be considered as clinically indicated.

Consideration should be given to reducing the total immunosuppression in transplant patients who develop PML or PVAN. However, reduced immunosuppression may place the graft at risk.

Neurotoxicity

There have been reports of convulsions in adult and pediatric patients receiving cyclosporine, particularly in combination with high dose methylprednisolone.

Encephalopathy, including Posterior Reversible Encephalopathy Syndrome (PRES), has been described both in postmarketing reports and in the literature. Manifestations include impaired consciousness, convulsions, visual disturbances (including blindness), loss of motor function, movement disorders and psychiatric disturbances. In many cases, changes in the white matter have been detected using imaging techniques and pathologic specimens. Predisposing factors such as hypertension, hypomagnesemia, hypocholesterolemia, high-dose corticosteroids, high cyclosporine blood concentrations, and graft-versus-host disease have been noted in many but not all of the reported cases. The changes in most cases have been reversible upon discontinuation of cyclosporine, and in some cases improvement was noted after reduction of dose. It appears that patients receiving liver transplant are more susceptible to encephalopathy than those receiving kidney transplant. Another rare manifestation of cyclosporine-induced neurotoxicity, occurring in transplant patients more frequently than in other indications, is optic disc edema including papilloedema, with possible visual impairment, secondary to benign intracranial hypertension.

Care should be taken in using cyclosporine with nephrotoxic drugs (see PRECAUTIONS).

Rheumatoid Arthritis

Cyclosporine nephropathy was detected in renal biopsies of six out of 60 (10%) rheumatoid arthritis patients after the average treatment duration of 19 months. Only one patient, out of these 6 patients, was treated with a dose ≤ 4 mg/kg/day. Serum creatinine improved in all but one patient after discontinuation of cyclosporine. The "maximal creatinine increase" appears to be a factor in predicting cyclosporine nephropathy.

There is a potential, as with other immunosuppressive agents, for an increase in the occurrence of malignant lymphomas with cyclosporine. It is not clear whether the risk with cyclosporine is greater than that in rheumatoid arthritis patients or in rheumatoid arthritis patients on cytotoxic treatment for this indication. Five cases of lymphoma were detected: four in a survey of approximately 2,300 patients treated with cyclosporine for rheumatoid arthritis, and another case of lymphoma was reported in a clinical trial. Although other tumors (12 skin cancers, 24 solid tumors of diverse types, and 1 multiple myeloma) were also reported in this survey, epidemiologic analyses did not support a relationship to cyclosporine other than for malignant lymphomas.

Patients should be thoroughly evaluated before and during Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]) treatment for the development of malignancies. Moreover, use of Gengraf® therapy with other immunosuppressive agents may induce an excessive immunosuppression which is known to increase the risk of malignancy.

Psoriasis

(See also Boxed WARNINGS for Psoriasis)

Since cyclosporine is a potent immunosuppressive agent with a number of potentially serious side effects, the risks and benefits of using Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]) should be considered before treatment of patients with psoriasis. Cyclosporine, the active ingredient in Gengraf®, can cause nephrotoxicity and hypertension (see PRECAUTIONS) and the risk increases with increasing dose and duration of therapy. Patients who may be at increased risk such as those with abnormal renal function, uncontrolled hypertension or malignancies, should not receive Gengraf®.

Renal dysfunction is a potential consequence of Gengraf®, therefore renal function must be monitored during therapy.

Patients receiving Gengraf® require frequent monitoring of serum creatinine (see Special Monitoring under DOSAGE AND ADMINISTRATION). Elderly patients should be monitored with particular care, since decreases in renal function also occur with age. If patients are not properly monitored and doses are not properly adjusted, cyclosporine therapy can cause structural kidney damage and persistent renal dysfunction.

An increase in serum creatinine and BUN may occur during Gengraf® therapy and reflects a reduction in the glomerular filtration rate.

Kidney biopsies from 86 psoriasis patients treated for a mean duration of 23 months with 1.2 to 7.6 mg/kg/day of cyclosporine showed evidence of cyclosporine nephropathy in 18/86 (21%) of the patients. The pathology consisted of renal tubular atrophy and interstitial fibrosis. On repeat biopsy of 13 of these patients maintained on various dosages of cyclosporine for a mean of 2 additional years, the number with cyclosporine induced nephropathy rose to 26/86 (30%). The majority of patients (19/26) were on a dose of ≥ 5 mg/kg/day (the highest recommended dose is 4 mg/kg/day). The patients were also on cyclosporine for greater than 15 months (18/26) and/or had a clinically significant increase in serum creatinine for greater than 1 month (21/26). Creatinine levels returned to normal range in 7 of 11 patients in whom cyclosporine therapy was discontinued.

There is an increased risk for the development of skin and lymphoproliferative malignancies in cyclosporine-treated psoriasis patients. The relative risk of malignancies is comparable to that observed in psoriasis patients treated with other immunosuppressive agents.

Tumors were reported in 32 (2.2%) of 1439 psoriasis patients treated with cyclosporine worldwide from clinical trials. Additional tumors have been reported in 7 patients in cyclosporine postmarketing experience. Skin malignancies were reported in 16 (1.1%) of these patients; all but 2 of them had previously received PUVA therapy. Methotrexate was received by 7 patients. UVB and coal tar had been used by 2 and 3 patients, respectively. Seven patients had either a history of previous skin cancer or a potentially predisposing lesion was present prior to cyclosporine exposure. Of the 16 patients with skin cancer, 11 patients had 18 squamous cell carcinomas and 7 patients had 10 basal cell carcinomas.

There were two lymphoproliferative malignancies; one case of non-Hodgkin's lymphoma which required chemotherapy, and one case of mycosis fungoides which regressed spontaneously upon discontinuation of cyclosporine. There were four cases of benign lymphocytic infiltration: 3 regressed spontaneously upon discontinuation of cyclosporine, while the fourth regressed despite continuation of the drug. The remainder of the malignancies, 13 cases (0.9%), involved various organs.

Patients should not be treated concurrently with cyclosporine and PUVA or UVB, other radiation therapy, or other immunosuppressive agents, because of the possibility of excessive immunosuppression and the subsequent risk of malignancies (see CONTRAINDICATIONS). Patients should also be warned to protect themselves appropriately when in the sun, and to avoid excessive sun exposure. Patients should be thoroughly evaluated before and during treatment for the presence of malignancies remembering that malignant lesions may be hidden by psoriatic plaques. Skin lesions not typical of psoriasis should be biopsied before starting treatment. Patients should be treated with Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]) only after complete resolution of suspicious lesions, and only if there are no other treatment options (see Special Monitoring for Psoriasis Patients).

Special Excipients

Alcohol (ethanol)

The alcohol content (see DESCRIPTION) of Gengraf® should be taken into account when given to patients in whom alcohol intake should be avoided or minimized, e.g., pregnant or breastfeeding women, in patients presenting with liver disease or epilepsy, in alcoholic patients, or pediatric patients. For an adult weighing 70 kg, the maximum daily oral dose would deliver about 1 gram of alcohol which is approximately 6% of the amount of alcohol contained in a standard drink.

Special Excipients

Alcohol (ethanol)

The alcohol content (see DESCRIPTION) of Gengraf® should be taken into account when given to patients in whom alcohol intake should be avoided or minimized, e.g., pregnant or breastfeeding women, in patients presenting with liver disease or epilepsy, in alcoholic patients, or pediatric patients. For an adult weighing 70 kg, the maximum daily oral dose would deliver about 1 gram of alcohol which is approximately 6% of the amount of alcohol contained in a standard drink.

Legal Issues

There is currently no legal information available for this drug.

FDA Safety Alerts

There are currently no FDA safety alerts available for this drug.

Manufacturer Warnings

There is currently no manufacturer warning information available for this drug.

FDA Labeling Changes

There are currently no FDA labeling changes available for this drug.

Uses

Kidney, Liver and Heart Transplantation

Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]) is indicated for the prophylaxis of organ rejection in kidney, liver, and heart allogeneic transplants. Cyclosporine (MODIFIED) has been used in combination with azathioprine and corticosteroids.

Rheumatoid Arthritis

Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]) is indicated for the treatment of patients with severe active, rheumatoid arthritis where the disease has not adequately responded to methotrexate. Gengraf® can be used in combination with methotrexate in rheumatoid arthritis patients who do not respond adequately to methotrexate alone.

Psoriasis

Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]) is indicated for the treatment of adult, nonimmunocompromised patients with severe (i.e., extensive and/or disabling), recalcitrant, plaque psoriasis who have failed to respond to at least one systemic therapy (e.g., PUVA, retinoids, or methotrexate) or in patients for whom other systemic therapies are contraindicated, or cannot be tolerated.

While rebound rarely occurs, most patients will experience relapse with Gengraf® as with other therapies upon cessation of treatment.

History

There is currently no drug history available for this drug.

Other Information

Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]) is a modified oral formulation of cyclosporine that forms an aqueous dispersion in an aqueous environment.

Cyclosporine, the active principle in Gengraf®, is a cyclic polypeptide immunosuppressant agent consisting of 11 amino acids. It is produced as a metabolite by the fungus species Aphanocladium album.

Chemically, cyclosporine is designated as [R-[R*,R*-(E)]]-cyclic-(L-alanyl-D-alanyl-N-methyl-L-leucyl-N -methyl-L-leucyl-N-methyl-L-valyl-3-hydroxy-N,4-dimethyl- L-2-amino-6-octenoyl-L-α-amino-butyryl-N-methylglycyl-N -methyl-L-leucyl-L-valyl-N-methyl-L-leucyl).

Gengraf® Capsules (cyclosporine capsules, USP [MODIFIED]) are available in 25 mg and 100 mg strengths.

Each 25 mg capsule contains

cyclosporine, 25 mg, alcohol, USP, absolute, 12.8% v/v (10.1% wt/vol.).

Each 100 mg capsule contains

cyclosporine, 100 mg, alcohol, USP, absolute, 12.8% v/v (10.1% wt/vol.).

Inactive Ingredients

FD&C Blue No. 2, gelatin NF, polyethylene glycol NF, polyoxyl 35 castor oil NF, polysorbate 80 NF, propylene glycol USP, sorbitan monooleate NF, titanium dioxide.

The chemical structure for cyclosporine USP is:

Chemical structure for cyclosporine.

Gengraf Manufacturers


  • Cardinal Health
    Gengraf (Cyclosporine) Capsule [Cardinal Health]
  • Abbvie Inc.
    Gengraf (Cyclosporine) Capsule [Abbvie Inc.]
  • Abbvie Inc.
    Gengraf (Cyclosporine) Solution [Abbvie Inc.]

Login To Your Free Account