Thioridazine Hydrochloride

Thioridazine Hydrochloride

Thioridazine Hydrochloride Recall

Get an alert when a recall is issued.

Questions & Answers

Side Effects & Adverse Reactions

Increased Mortality in Elderly Patients with Dementia-Related Psychosis
Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death. Thioridazine hydrochloride is not approved for the treatment of patients with dementia-related psychosis (see BOXED WARNING).

Potential for Proarrhythmic Effects
DUE TO THE POTENTIAL FOR SIGNIFICANT, POSSIBLY LIFE THREATENING, PROARRHYTHMIC EFFECTS WITH THIORIDAZINE TREATMENT, THIORIDAZINE SHOULD BE RESERVED FOR USE IN THE TREATMENT OF SCHIZOPHRENIC PATIENTS WHO FAIL TO SHOW AN ACCEPTABLE RESPONSE TO ADEQUATE COURSES OF TREATMENT WITH OTHER ANTIPSYCHOTIC DRUGS, EITHER BECAUSE OF INSUFFICIENT EFFECTIVENESS OR THE INABILITY TO ACHIEVE AN EFFECTIVE DOSE DUE TO INTOLERABLE ADVERSE EFFECTS FROM THOSE DRUGS. CONSEQUENTLY, BEFORE INITIATING TREATMENT WITH THIORIDAZINE, IT IS STRONGLY RECOMMENDED THAT A PATIENT BE GIVEN AT LEAST TWO TRIALS, EACH WITH A DIFFERENT ANTIPSYCHOTIC DRUG PRODUCT, AT AN ADEQUATE DOSE, AND FOR AN ADEQUATE DURATION. THIORIDAZINE HAS NOT BEEN SYSTEMATICALLY EVALUATED IN CONTROLLED TRIALS IN THE TREATMENT OF REFRACTORY SCHIZOPHRENIC PATIENTS AND ITS EFFICACY IN SUCH PATIENTS IS UNKNOWN.
Prolongation of the QTc interval has been associated with the ability to cause Torsades de pointes type arrhythmias, a potentially fatal polymorphic ventricular tachycardia, and sudden death. There are several published case reports of Torsades de pointes and sudden death associated with thioridazine treatment. A causal relationship between these events and thioridazine therapy has not been established but, given the ability of thioridazine to prolong the QTc interval, such a relationship is possible.
Certain circumstances may increase the risk of Torsades de pointes and/or sudden death in association with the use of drugs that prolong the QTc interval, including 1) bradycardia, 2) hypokalemia, 3) concomitant use of other drugs that prolong the QTc interval, 4) presence of congenital prolongation of the QT interval, and 5) for thioridazine in particular, its use in patients with reduced activity of P450 2D6 or its coadministration with drugs that may inhibit P450 2D6 or by some other mechanism interfere with the clearance of thioridazine (see CONTRAINDICATIONSand PRECAUTIONS).
It is recommended that patients being considered for thioridazine treatment have a baseline ECG performed and serum potassium levels measured. Serum potassium should be normalized before initiating treatment and patients with a QTc interval greater than 450 msec should not receive thioridazine treatment. It may also be useful to periodically monitor ECG's and serum potassium during thioridazine treatment, especially during a period of dose adjustment. Thioridazine should be discontinued in patients who are found to have a QTc interval over 500 msec.

Tardive Dyskinesia
Tardive dyskinesia, a syndrome consisting of potentially irreversible, involuntary, dyskinetic movements may develop in patients treated with antipsychotic drugs. Although the prevalence of the syndrome appears to be highest among the elderly, especially elderly women, it is impossible to rely upon prevalence estimates to predict, at the inception of antipsychotic treatment, which patients are likely to develop the syndrome. Whether antipsychotic drug products differ in their potential to cause tardive dyskinesia is unknown.
Both the risk of developing the syndrome and the likelihood that it will become irreversible are believed to increase as the duration of treatment and the total cumulative dose of antipsychotic drugs administered to the patient increase. However, the syndrome can develop, although much less commonly, after relatively brief treatment periods at low doses.
There is no known treatment for established cases of tardive dyskinesia, although the syndrome may remit, partially or completely, if antipsychotic treatment is withdrawn. Antipsychotic treatment itself, however, may suppress (or partially suppress) the signs and symptoms of the syndrome and thereby may possibly mask the underlying disease process. The effect that symptomatic suppression has upon the long-term course of the syndrome is unknown.
Given these considerations, antipsychotics should be prescribed in a manner that is most likely to minimize the occurrence of tardive dyskinesia. Chronic antipsychotic treatment should generally be reserved for patients who suffer from a chronic illness that, 1) is known to respond to antipsychotic drugs, and, 2) for whom alternative, equally effective, but potentially less harmful treatments are not available or appropriate. In patients who do require chronic treatment, the smallest dose and the shortest duration of treatment producing a satisfactory clinical response should be sought. The need for continued treatment should be reassessed periodically.
If signs and symptoms of tardive dyskinesia appear in a patient on antipsychotics, drug discontinuation should be considered. However, some patients may require treatment despite the presence of the syndrome.
(For further information about the description of tardive dyskinesia and its clinical detection, please refer to the sections on Information for Patientsand ADVERSE REACTIONS.)
It has been suggested in regard to phenothiazines in general, that people who have demonstrated a hypersensitivity reaction (e.g., blood dyscrasias, jaundice) to one may be more prone to demonstrate a reaction to others. Attention should be paid to the fact that phenothiazines are capable of potentiating central nervous system depressants (e.g., anesthetics, opiates, alcohol, etc.) as well as atropine and phosphorus insecticides. Physicians should carefully consider benefit versus risk when treating less severe disorders.
Reproductive studies in animals and clinical experience to date have failed to show a teratogenic effect with thioridazine. However, in view of the desirability of keeping the administration of all drugs to a minimum during pregnancy, thioridazine should be given only when the benefits derived from treatment exceed the possible risks to mother and fetus.

Pregnancy

Nonteratogenic Effects

Thioridazine hydrochloride should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Neuroleptic Malignant Syndrome (NMS)
A potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with antipsychotic drugs. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmias).
The diagnostic evaluation of patients with this syndrome is complicated. In arriving at a diagnosis, it is important to identify cases where the clinical presentation includes both serious medical illness (e.g., pneumonia, systemic infection, etc.) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever, and primary central nervous system (CNS) pathology.
The management of NMS should include, 1) immediate discontinuation of antipsychotic drugs and other drugs not essential to concurrent therapy, 2) intensive symptomatic treatment and medical monitoring, and 3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for uncomplicated NMS.
If a patient requires antipsychotic drug treatment after recovery from NMS, the potential reintroduction of drug therapy should be carefully considered. The patient should be carefully monitored, since recurrences of NMS have been reported.

Central Nervous System Depressants
As in the case of other phenothiazines, thioridazine is capable of potentiating central nervous system depressants (e.g., alcohol, anesthetics, barbiturates, narcotics, opiates, other psychoactive drugs, etc.) as well as atropine and phosphorus insecticides. Severe respiratory depression and respiratory arrest have been reported when a patient was given a phenothiazine and a concomitant high dose of a barbiturate.

Legal Issues

There is currently no legal information available for this drug.

FDA Safety Alerts

There are currently no FDA safety alerts available for this drug.

Manufacturer Warnings

There is currently no manufacturer warning information available for this drug.

FDA Labeling Changes

There are currently no FDA labeling changes available for this drug.

Uses

Thioridazine hydrochloride tablets are indicated for the management of schizophrenic patients who fail to respond adequately to treatment with other antipsychotic drugs. Due to the risk of significant, potentially life threatening, proarrhythmic effects with thioridazine treatment, thioridazine hydrochloride tablets should be used only in patients who have failed to respond adequately to treatment with appropriate courses of other antipsychotic drugs, either because of insufficient effectiveness or the inability to achieve an effective dose due to intolerable adverse effects from those drugs. Consequently, before initiating treatment with thioridazine hydrochloride tablets, it is strongly recommended that a patient be given at least two trials, each with a different antipsychotic drug product, at an adequate dose, and for an adequate duration (see WARNINGSand CONTRAINDICATIONS).
However, the prescriber should be aware that thioridazine hydrochloride tablets have not been systematically evaluated in controlled trials in treatment refractory schizophrenic patients and its efficacy in such patients is unknown.

History

There is currently no drug history available for this drug.

Other Information

Thioridazine hydrochloride is 2-methylmercapto-10-[2-(N-methyl-2-piperidyl) ethyl] phenothiazine. Its structural formula, molecular weight and molecular formula are:

MM1


C21H26N2S2HCl M.Wt.: 407.05
Thioridazine hydrochloride, USP is available as tablets for oral administration containing 10 mg, 25 mg, 50 mg or 100 mg.
Each tablet for oral administration contains the following inactive ingredients: colloidal silicon dioxide, croscarmellose sodium, FD&C Yellow No. 6 Aluminum Lake, hydroxypropyl cellulose, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium lauryl sulfate and titanium dioxide.

Thioridazine Hydrochloride Manufacturers


  • Remedyrepack Inc.
    Thioridazine Hydrochloride Tablet [Remedyrepack Inc. ]
  • Remedyrepack Inc.
    Thioridazine Hydrochloride Tablet [Remedyrepack Inc. ]
  • Mylan Institutional Inc.
    Thioridazine Hydrochloride Tablet, Film Coated [Mylan Institutional Inc.]
  • Mylan Pharmaceuticals Inc.
    Thioridazine Hydrochloride Tablet, Film Coated [Mylan Pharmaceuticals Inc.]
  • Mutual Pharmaceutical
    Thioridazine Hydrochloride Tablet, Film Coated [Mutual Pharmaceutical]

Login To Your Free Account